logo

֍ Version 1.0
֍ Quick GO
֍ Search PMDBase


WWW SITE

Critical Publications:

[1]. Jiang, N. and Wessler, S.R. (2001) Insertion Preference of Maize and Rice Miniature Inversted Repeat Transposable Elements as Revealed by the Analysis of Nested Elements. Plant Cell 13:2553-2564.

[2]. Merritt B J, Culley T M, Avanesyan A, et al. An Empirical Review: Characteristics of Plant Microsatellite Markers that Confer Higher Levels of Genetic Variation. Applications in Plantences, 2015, 3(8).

[3]. Hou M, Fang D U. Null Allele Detection in Plant Microsatellite Studies:Comparisons and Applications. Plant Diversity & Resources, 2014.

[4]. Chapuis M, Plantamp C, Streiff R, et al. Microsatellite evolutionary rate and pattern in Schistocerca gregaria inferred from direct observation of germline mutations. Molecular Ecology, 2015, 24(24).

[5]. Charlotte C. GermainAubrey, Cory Nelson, Douglas E. Soltis, et al. Are Microsatellite Fragment Lengths Useful for Population-Level Studies? The Case of Polygala lewtonii (Polygalaceae). Applications in Plantences, 2016, 4(2).

[6]. Zhao D W, Yang J B, Yang S X, et al. Genetic diversity and domestication origin of tea plant Camellia taliensis (Theaceae) as revealed by microsatellite markers. Bmc Plant Biology, 2014, 14(2):1-12.

[7]. Raghami M, López-Sesé A I, Hasandokht M R, et al. Genetic diversity among melon accessions from Iran and their relationships with melon germplasm of diverse origins using microsatellite markers. Plant Systematics & Evolution, 2014, 300(1):139-151.

[8]. Irish B M, Cuevas H E, Simpson S A, et al. Musa spp. Germplasm Management: Microsatellite Fingerprinting of USDA-ARS National Plant Germplasm System Collection. Crop Science, 2014, 54(5):835-844.

[9]. Bossu A, Bertaudièremontès V, Dubut V, et al. Microsatellite primers in Parietaria judaica (Urticaceae) to assess genetic diversity and structure in urban landscapes.  Applications in Plant Sciences, 2014, 2(9):237-247.

[10]. Tappiban P, Sraphet S, Whankaew S, et al. Assessment of genetic diversity and relationships of Krachaai Sayam, an endemic plant in Thailand using microsatellite markers. Plant Biosystems, 2015:1-8.

[11]. Chatwin W B, Carpenter K K, Jimenez F R, et al. Microsatellite primer development for post oak, Quercus stellata (Fagaceae).  Applications in Plantences, 2014, 2(10):481-490.

[12]. Manoel R O, Freitas M L M, Barreto M A, et al. Development and Characterization of 32 Microsatellite Loci in Genipa americana (Rubiaceae). Applications in Plantences, 2014, 2(3):3472-3472.

[13]. Chen W W, Xiao Z Z, Tong X, et al. Development and characterization of 25 microsatellite primers for Ilex chinensis (Aquifoliaceae).  Applications in Plant Sciences, 2015, 3(10):347-359.

[14]. Chapuis M P, Plantamp C, Streiff R, et al. Data from: Microsatellite evolutionary rate and pattern in Schistocerca gregaria inferred from direct observation of germline mutations. 2015.

[15]. Forrest C N, Roberts D G, Denham A J, et al. Microsatellite primers for vulnerable and thriving Acacia (Fabaceae) species from Australia's arid zone.Applications in Plant Sciences, 2015, 3(4).

[16]. Bhattarai G. Microsatellite Development and Characterization in HazelnutPlant & Animal Genome, 2015.

[17]. Botma Visser, Liezel Herselman, Zacharias A Pretorius. Microsatellite characterisation of South African racesSouth African Journal of Plant & Soil, 2016:1-6.

[18]. Letelier L, Harvey N, Valderrama A, et al. ISOLATION AND CHARACTERIZATION OF 12 MICROSATELLITE LOCI IN SOAPBARK, QUILLAJA SAPONARIA (QUILLAJACEAE)1Applications in Plantences, 2015, 3(5).

[19]. Zsuzsanna György, José F. Vouillamoz, Mária Höhn. Microsatellite markers reveal common East Alpine–Carpathian gene pool for the arctic–alpine Rhodiola rosea, (Crassulaceae)Plant Systematics\s&\sevolution, 2016, 302(6):1-10.

[20]. Aguilarbarajas E, Sork V L, Gonzálezzamora A, et al. Isolation and characterization of polymorphic microsatellite loci in Spondias radlkoferi (Anacardiaceae).Applications in Plantences, 2014, 2(11):303-13.

[21]. Naik B K, Vinod, Sharma J B, et al. Molecular mapping and validation of the microsatellite markers linked to the Secale cereale -derived leaf rust resistance gene Lr45, in wheatMolecular Breeding, 2015, 35(2):1-10.

[22]. Beck J B, Semple J C, Brull J M, et al. Genus-Wide Microsatellite Primers for the Goldenrods (Solidago; Asteraceae)Applications in Plant Sciences, 2014, 2(4):1-4.

[23]. Doddamani D, Katta M A, Khan A W, et al. CicArMiSatDB: the chickpea microsatellite databaseBmc Bioinformatics, 2014, 15(14):212-212.

[24]. Choudhary M, Hossain F, Muthusamy V, et al. Microsatellite marker-based genetic diversity analyses of novel maize inbreds possessing rare allele of β-carotene hydroxylase (crtRB1) for their utilization in β-carotene enrichmentJournal of Plant Biochemistry & Biotechnology, 2016:1-9.

[25]. Phumichai C, Phumichai T, Wongkaew A. Novel Chloroplast Microsatellite (cpSSR) Markers for Genetic Diversity Assessment of Cultivated and Wild Hevea RubberPlant Molecular Biology Reporter, 2015, 33(5):1-13.

[26]. Sivaranjani R, Santha I M, Pandey N, et al. Microsatellite-based genetic diversity in selected exotic and indigenous maize ( Zea mays L.) inbred lines differing in total kernel carotenoidsIndian Journal of Genetics & Plant Breeding, 2014, 74(1):34-41.

[27]. Nock C J, Elphinstone M S, Ablett G, et al. Whole Genome Shotgun Sequences for Microsatellite Discovery and Application in Cultivated and Wild Macadamia (Proteaceae)Applications in Plant Sciences, 2014, 2(4).

[28]. Byers C, Maughan P J, Clouse J, et al. Microsatellite primers in Agave utahensis (Asparagaceae), a keystone species in the Mojave Desert and Colorado Plateau.Applications in Plant Sciences, 2014, 2(9):403–407.

[29]. Machado P D S, Alfenas A C, Alfenas R F, et al. Microsatellite analysis indicates that Puccinia psidii, in Australia is mutating but not recombining Australasian Plant Pathology, 2015, 44(4):455-462.

[30]. Cheng Z., Dong F., Langdon T., Ouyang S., Buell C.R., Gu M., Blattner F.R. and Jiang J. (2002) Functional rice centromeres are marked by a satellite repeat and a centromere-specific retrotransposon. Plant Cell 14:1691-1704 .

[31]. Ovesná J, Leišová-Svobodová L, Kučera L. Microsatellite Analysis Indicates the Specific Genetic Basis of Czech Bolting Garlic. Czech Journal of Genetics & Plant Breeding, 2014, 50(3):226-234.

[32]. Meer S V D, Houdt J K J V, Maes G E, et al. Microsatellite Primers for the Gynodioecious Grassland Perennial Saxifraga granulata (Saxifragaceae). Applications in Plant Sciences, 2014, 2(9):237-247.

[33]. van Dijk K J, Mellors J, Waycott M. Development of multiplex microsatellite PCR panels for the seagrass Thalassia hemprichii (Hydrocharitaceae).. Applications in Plant Sciences, 2014, 2(11).

[34]. Hossain F, Nepolean T, Vishwakarma A K, et al. Mapping and validation of microsatellite markers linked to sugary1 and shrunken2 genes in maize (Zea mays L.). Journal of Plant Biochemistry & Biotechnology, 2015, 24(2):135-142.

[35]. , KhalilBerdi Fotouhifar. Genetic diversity of, Valsa malicola isolates assessed by microsatellite-primed PCR (MP-PCR). Archives of Phytopathology & Plant Protection, 2014, 47(16):2003-2013.

[36]. Kumar M, Choi J Y, Kumari N, et al. Molecular breeding in Brassica for salt tolerance: importance of microsatellite (SSR) markers for molecular breeding in Brassica.. Frontiers in Plant Science, 2014, 6:688.

[37]. Cosson P, Decroocq V, Revers F. Development and characterization of 96 microsatellite markers suitable for QTL mapping and accession control in an Arabidopsis core collection. Plant Methods, 2014, 10(1):1-6.

[38]. Petersen J J, Parker I M, Potter D. Ten Polymorphic Microsatellite Primers in the Tropical Tree Caimito, Chrysophyllum cainito (Sapotaceae). Applications in Plant Sciences, 2014, 2(2).

[39]. Pramod S, Perkins A D, Welch M E. Patterns of microsatellite evolution inferred from the Helianthus annuus, (Asteraceae) transcriptome. Journal of Genetics, 2014, 93(2):431-42.

[40]. Rocío Belinchón, Christopher J. Ellis, Rebecca Yahr. Microsatellite loci in two epiphytic lichens with contrasting dispersal modes: Nephroma laevigatum and N. parile (Nephromataceae). Applications in Plant Sciences, 2014, 2(11).

[41]. Kandel R, Singh H P, Singh B P, et al. Assessment of Genetic Diversity in Napier Grass ( Pennisetum purpureum, Schum.) using Microsatellite, Single-Nucleotide Polymorphism and Insertion-Deletion Markers from Pearl Millet ( Pennisetum glaucum, [L.].  R. Br.). Plant Molecular Biology Reporter, 2015:1-8.

[42]. Nadyeina O, Cornejo C, Boluda C G, et al. Characterization of Microsatellite Loci in Lichen-Forming Fungi of Bryoria Section Implexae (Parmeliaceae). Applications in Plantences, 2014, 2(7):60060V-60060V-10.

[43]. Pandey N, Hossain F, Kumar K, et al. Microsatellite marker-based genetic diversity among quality protein maize (QPM) inbreds differing for kernel iron and zinc. Molecular Plant Breeding, 2015, 666:1-10.

[44]. Jia Q, Gu Q, L. Zheng †, et al. Genetic analysis of the population structure of the rice false smut fungus, Villosiclava virens, in China using microsatellite markers mined from a genome assembly. Plant Pathology, 2015, 64(6):1440–1449.

[45]. Hu J, Wang P, Su Y, et al. Microsatellite Diversity, Population Structure, and Core Collection Formation in Melon Germplasm. Plant Molecular Biology Reporter, 2014, 33(3):439-447.

[46]. Guillemaud T, Broadhurst L, Legoff I, et al. Development of 23 polymorphic microsatellite loci in invasive silver wattle, Acacia dealbata (Fabaceae).. Applications in Plant Sciences, 2015, 3(5).

[47]. Donkpegan A S, Doucet J L, Dainou K, et al. Microsatellite development and flow cytometry in the African tree genus Afzelia (Fabaceae, Caesalpinioideae) reveal a polyploid complex.. Applications in Plant Sciences, 2015, 3(1).

[48]. Germain-Aubrey C C, Cory N, Soltis D E, et al. Are microsatellite fragment lengths useful for population-level studies? The case ofPolygala lewtonii(Polygalaceae)1:. Applications in Plant Sciences, 2016, 4(2).

[49]. Morris Ashley B, Scalf Cassandra, Burleyson Austin, et al. Development and characterization of microsatellite primers in the federally endangeredAstragalus bibullatus(Fabaceae)1:. Applications in Plant Sciences, 2016, 4(4).

[50]. López-Villalobos A, Samis K E, Eckert C G. Microsatellite primers for Camissoniopsis cheiranthifolia (Onagraceae) and cross-amplification in related species.. Applications in Plant Sciences, 2014, 2(October):481-490.

[51]. S. A. Mousavi,, M. R. Fattahi Moghaddam,, Z. Zamani,, et al. Genetic Diversity and Relationship of Iranian and Exotic Almond Cultivars Using Microsatellite (SSR) Markers. Seed & Plant Improvment Journal, 2015.

[52]. Nahiduzzaman M, Akter S, Robiulhasan M, et al. Microsatellite-based sibship reconstruction and estimation of genetic relatedness in the endangered Labeocalbasu (Hamilton 1822) (Cyprinidae: Cypriniformes). Journal of Animal & Plant Sciences, 2015, 25(3).

[53]. Tahir M S, Hussain T, Babar M E, et al. A Panel of Microsatellite Markers for Genetic Diversity and Parentage analysis of Dog Breeds in Pakistan. Journal of Animal & Plant Sciences, 2015, 25(2):351-356.

[54]. Bourguiba H, Batnini M A, Krichen L, et al. Population structure and core collection construction of apricot (Prunus armeniaca L.) in North Africa based on microsatellite markers. Plant Genetic Resources, 2015:1-8.

[55]. Visser B, Herselman L, Pretorius Z A. Microsatellite characterisation of South African Puccinia striiformis races. South African Journal of Plant & Soil, 2016:1-6.

[56]. Kim YM, Shin YS, Jeong JH. Development and characterization of microsatellite primers for Chamaecyparis obtusa (Cupressaceae).. Applications in plant sciences, 2016, 4(5).

[57]. Glennon KL, Cron GV. Microsatellite primers for a species of South African everlasting daisy (Helichrysum odoratissimum; Gnaphalieae, Asteraceae).. Applications in Plantences, 2016, 4(5).

[58]. Nowell V J, Wang S, Smith T W. Development and characterization of 11 microsatellite primers for the sedge Trichophorum planifolium (Cyperaceae).. Applications in Plantences, 2015, 3(9).

................

................

2016@All copyrights are reserved by Department of Sesame Germplasm Resources at Oil Crops Research Institute.
For suggestions, please contact web administrator
IE 8.0 or more higher & 1366×1024 resolution suggested